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Abstract: In this paper we present a widely applicable definition of the predictive likelihood based on estimators that are either 
sufficient or approximately sufficient. Under regularity conditions, this predictive likelihood is shown to equal the Bayes 
prediction density up to terms of order Op(n-1). For the cases where this predictive likelihood is difficult to compute, an 
approximate predictive likelihood is provided which differs from the proposed predictive likelihood by Op( n 1). To illustrate 
the ideas, the approximate predictive likelihood and the Bayes prediction density are obtained for a pth order non-circular 
autoregression. 
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1. Introduction 

Recently there has been much interest in pre- 
diction problems for parameteric statistical mod- 
els using non-Bayesian methods. The main idea is 
to derive prediction functions, called predictive 
likelihoods, that map the future observations onto 
the real line, and which do not depend on the 
unknown parameter. The related definitions of 
Lauritzen (1974), Hinkley (1979) and Butler (1985), 
which involve conditioning on the value of a 
minimal sufficient statistic are, however, difficult 
to use especially in models with dependent ran- 
dom variables where sufficient statistics, when 
available, have intractable exact sampling distri- 
butions. To overcome this problem, Davison (1986) 
using the Bayes set-up, derives an approximate 
predictive likelihood by expanding the posterior 
prediction density. Some other definitions, based 

on maximum likelihood (ML) estimators possess- 
ing the best-asymptotically-normal property are 
contained in Cooley and Parke (1985) and Chib 
(1985). 

In this paper we present a new difinition of the 
predictive likelihood based on estimators that are 
either sufficient or approximately sufficient. Of 
course, these estimators are not necessarily ML 
estimators. We show that under fairly weak regu- 
larity conditions, our predictive likelihood equals 
the Bayes prediction density upto terms of order 
Op(n-1), where n is the sample size. Using the 
results of Durbin (1980) and Abril (1985) we also 
provide an Op(n -1) approximation to the predic- 
tive likelihood, called the approximate predictive 
likelihood, that is easily computable. Interestingly, 
under some conditions, our approximate predic- 
tive likelihood, which is derived from entirely 
frequentist principles is shown to be related to the 
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predictive likelihood obtained by Davison (1986) 
from the Bayes set-up. As an example, we derive 
the approximate predictive likelihood for a p th  
order non-circular autoregressive process with un- 
known variance. The corresponding Bayes predict- 
ion density, and Davison's predictive likelihood, is 
also derived under the assumption that substan- 
tive prior information on the parameters is availa- 
ble. 

2. Exact predictive likelihood 

Let (Y., n >/1} be a stationary sequence of 
real-valued randomvariables defined on a com- 
mon probability space (I2, B, P). For each n >t 1, 
let the random-vector Y(.)= (Y1 . . . . .  Y.)" have a 
joint pdf f(y(.) ;  0) where 0 = (01 . . . . .  O k) ~ O, an 
open subset of R k, k >~ 1. Let 00 be the true value 
of the unknown parameter 0. Assume that, for 
each n >~ 1, the support (y(.): f(Yt.); 0 ) >  0} is 
independent of 0. 

Let 0. = ~.(y(.)) be an estimator of the parame- 
ter 00. We assume that t~ is a unique unbiased 
estimator of 00, and if not unbiased that the bias 
term is of order Op(n-1), i.e. 

goo On = O0 + % ( n  -1) as n ~ oo. 

We further assume that ~. is a sufficient or 
approximately sufficient estimator of 00. (See defi- 
nition 1 below.) These assumptions are not unduly 
restrictive and cover many of the interesting cases. 

Definition 1 (Abril, 1985). Let 0. = 0(y(.)) be an 
estimator of the parameter 0 o. We say 0. is a 
(proper) approximately sufficient estimator for 00, 
if the joint pdf of Y(.) can be factorized as 

f (y , . ) ;  O)=g*(t~.; O)h*(y(.)) 

X[1 + k*(y, . ) ;  0, n)] (1") 

or as 

6)=g(O.; 

×[1 + k(y( . , ;  e, n)] (1) 

where the function k* and k are Op (n-  v/2) for 
some positive integer v, uniformly in y(~) and 0 in 
a neighborhood of 0 0, g(O.; #) is the marginal pdf 
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of t~ while g* need not be. Clearly, t~ is suffi- 
cient if the joint pdf f(y(.); O) can be expressed 
as (1") or (1) without the Oe(n v/z) terms. 

Note that although the function g*(t~; 0) in 
(1") can be deduced immediately from an inspect- 
ion of f(y(.); 0), the second representation is 
usually difficult to write down. 

The prediction problem can be described as 
follows. Let the random-vector Y(n + s) = 
(Y('), Z ' ) ' ,  where Z =  (Y.+a . . . . .  Y.+.)' is unob- 
served, have a joint pdf f(y(.),  z; 00). Given a 
realization y(.) of Y(.) we seek to estimate the 
conditional pdf h(z; OoJy(.)) ' of z given Y(.)= 
y(.). The idea of predictive likelihood provides a 
solution to this problem. 

Consider now a definition of the predictive 
likelihood which is more general than the defini- 
tions proposed in Lauritzen (1974), Hinkley (1979) 
and Butler (1986) all of which are based on 
minimal sufficient statistics. The new definition 
requires estimators that may be only approxi- 
mately sufficient, not necessarily sufficient. 

Definition 2. Let t~ and t~+, be either both suffi- 
cient or both approximately sufficient estimators 
of 0 0 satisfying (1). Then the predictive likelihood 
of Z given Y(,) = y(~) is defined as 

L ( z [ y ( . ) ) = P ( Y ( . )  ' z [ 0-+s) 
' (3) 

where 

f(y(o; o0) 
P (Y(i) I ~)  g(t~; 00) 

is the conditional pdf of Y(i) given/~, i = n, n + s. 

Remark 1. Since our definition is based on unique 
sufficient or approximately sufficient estimator of 
00' satisfying (1), we do not need the kind of 
Jacobian term that is necessary in Butler's defini- 
tion. (See equation 2.4, Butler, 1986). In his case, 
the Jacobian term is needed to ensure that the 
same predictive likelihood is obtained for different 
1-1 specifications of the minimal sufficient statis- 
tic. Secondly, although it is clear that the de- 
nominator in (3), being free of z, is not needed in 
the above definition, its inclusion makes it match 
the Bayes prediction density (4) (See Theorem 1). 
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Remark 2. If t~ is sufficient, then (3) is free of 0, 
while if t~ is approximately sufficient then (3) is 
free of 0 upto terms of Op(n -v/E) which for Y(i) 
and 0 in a neighborhood of 0 0 go to zero as 
n ~ oo. Thus, by appropriately relaxing the re- 
strictive condition that the predictive likelihood be 
free of 0 for all n (imposed in the definitions of 
Lauritzen, Hinkley and Butler), we are able to 
provide a more widely applicable definition of the 
predictive likelihood. 

Definition 3. Let X(0) be a prior pdf on the 
parameter space 0, then the Bayes prediction den- 
sity of Z, given Yr,)=Ytn), is defined as 

f~(y~.~, z; o) x(0)dO 
fs(  z [Y(m) = , (4) 

ff(y~.~;  0) X(0) dO 

provided the integrals exist. 

= L ( z l y , . , )  

= L ( z l y , . , ) . ( l  + , 

where 0* ~ N(Oo) is in the line segment joining 
0,+s and 0,; the second equality follows because 
the first term of the integrand is free of 0 due to 
sufficiency; while the third equality follows from 
Assumption (A1) and (A2). Part (i) of the Theo- 
rem finally follows due to Assumption (A3) and 
an application of Slutsky's Theorem. The proof 
for the approximately sufficient cases with v >~ 2 
and v = 1 follows along the same lines. 

Remark 3. Davison (1986) shows that ML estima- 
tors, for example, usually satisfy Assumption (A3). 
Thus that assumption in Theorem 1 is not unduly 
restrictive. 

The next result provides a justification for our 
definition of the predictive likelihood, from the 
Bayes point of view. 

Theorem 1. Let ~ ( ~ ) =  fg(~.  O) X(O) dO, i=  n, 
n + s ,  exist. Assume (A1) Oi, i = n ,  n + s ,  are 
uniformly consistent for 0 o in a neighborhood, N( O o), 
around 0 o, (A2) ~'(0) possesses a continuous deriva- 
tive ~'(0) for all 0 E N(09), and (A3) 0~+s - O. = 
Op(n -1) as n ~ ~ ,  for 0 i ~ N(Oo). Then 

(i) f O ( z l y ( , ) ) = L ( z l y ( m ) [ 1  +O?(n 1)], 

if ~ is sufficient, or approximately sufficient with 
v >~ 2, and 

(ii) f S ( z l y ( , ) ) = L ( z l y , , ) ) [ 1  + Op(n-~/2)],  

if ~ is approximately sufficient with v = 1. 

Proof. Consider the case when t~, i = n, n + s are 
sufficient. Notice that f o  in (4) can be written as 

fp(y~,+~ld,+,).g(do+,; o) x(0)dO 

o) x(0) d0 

3. Approximate predictive likelihood 

It is often the case that the sufficient or ap- 
proximately sufficient estimators ~ do not possess 
tractable densities, g(0n; 00), thus rendering the 
computation of (3) analytically difficult. In such 
situations one can use the following result to find 
an approximation to L ( z  ] y(,)). 

Theorem 2 (Durbin, 1980; Abril, 1986). Let O, be 
a sufficient or approximately sufficient estimator O, 
satisfying (1), and not necessarily the ML estimator. 
Let 

D (0) = n  e ( (0o  - E0o)(0o - e 0 , ) '  ) 

be positive definite and finite for each n ~ N. Let 
1),(0) ~ D( Oo) as n ~ oo and 0 ~ 0 o. Then under 
Assumptions 1-4 of Durbin (1980), g(tJ; 00) is 
given by 

g(~.; Oo)=(1--~-]k/2lD(O~)[ -1/2f(y(");  0o) 

2"~ ] [ n I f ( y , , ) ;  0,) 

×[1+ O,(n-1)], (5) 

if O~ is sufficient or approximately sufficient with 
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v > ~ 2 ,  a n d  by  

[ 1 l/</:lD(a,,) -':f(Y(n,; Co) 

× [1+ Op(n-'/2)], (6) 

i f  t7 n is approximately sufficient with v = 1, uni- 
formly for 0 n in a neighborhood of 0 o. 

We now state the following result that provides 
an approximation to the predictive likelihood, 
called the approximate predictive likelihood, that 
is easily computable. 

Theorem 3. Let L(zly(.)) be the approximate 
predictive likelihood given by 

f(Y,.), z; O,,+s) 
L(z ly<,o)= f(Y(.,; 4) 

I D ( ¢ + , ) / ( n  + s) I '/2 
I D ( ¢ ) / n  i ,/2 (7) 

Then 

(i) L(zlytn))=L(zlyt.,)[1 + Op(n-')]  

i f  ~ is sufficient or approximately sufficient with 
v >1 2, and 

(if) L(zly(,,))=L(zly(,,))[1 + Or(n- ' /2)]  , 

if  4 is approximately sufficient with v : 1. 

Proof. The above theorem can be easily proved 
using (5) and (6). 

Remark 4. When d n is also the ML estimator, or 
asymptotically equivalent to it as is often the case 
in practice, the result of Theorem 3.1 hold 
with I1 /n .  D(t~n)l- ' /2 replaced by ]In(On)I ' /2 
(cf. Durbin, 1980, p. 317), where In(On) = 
-021n f ( y (n ) ;  0~)/~0~0' is the observed infor- 
mation. Thus, in such cases, the ratio of determi- 
nants in (7) is replaced by I[n(/Tn) l ' / 2 /  
I/+.÷.(0,,÷.) 11/2 

Remark 5. We may also mention that L(z I y(n)) is 
related to Davison's (1986) approximate predictive 
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likelihood which is defined as 

f D ( z I Y , . ) )  

f(y,,,,, z; d*÷,).A(d*+,).IL(d*)Ill2 
S ( y , . , ;  i&s(&,)i': ' 

(8) 

where )~(-) is as in (4), ~* is the M L  type estimate 
based on the product f(Yf0; 0) .  ?,(0), and ~ (~*)  
is the corresponding observed information matrix 
based on f(Y(i); O). )k(O), i = n, n + s. This defi- 
nition is obtained by using the Bayes set-up and 
expanding (4). Only when/~, the estimator used in 
(7) is also the ML estimator, and )~(0) is constant 
in a neighborhood of 00, will (7) and (8) be 
identical as functions of z. 

4. An example 

Consider the p th  order non-circular autoregres- 
sive process (cf. Anderson, 1971, p. 164) 

Yn=%Yn-1 + "'" +avyn_p+e  n, n = l , 2  . . . . .  

(9) 
where e, are iid N(0, o2), the roots of a(L)  = 1 - 
% L  . . . . .  % L  p all lie outside the unit circle, 
and the initial conditions Yto)=(yo, Y-1 . . . . .  
Y-p+1)' are known. Let 0 = (a' ,  o2) ', where a = 
(a 1 . . . . .  ap)'. Clearly, for all n > 1, the conditional 
pdf  of Yn given Y(n-1) is 

h(y , ;  O l y ( n -  1)) = (2~r) -a/2 o -1 

× exp{ 2-~o12 (y~ - alyn_ 1 . . . . .  apyn_p)2}. 

Let the 'data'  matrices be X ( , ) = ( x  1 . . . . .  xn), ' 
x( . )  = ( t o + ,  . . . . .  ton+.)', x ( . + . )  = ( x & .  x:s))' .  
where ' - .. , Xi -- ( Y i - ,  . . . . .  Yi-p), i = 1, ., n, and to) = 
(z j_ ,  . . . . .  Zj_p), j = n + l  . . . . .  n + s .  Notice that 
some elements of Xts ) are the unobserved future 
observations z~+j, j =  1 . . . . .  s - 1 .  Then, due to 
(9), the density function of Y(o, i = n, n + s con- 
ditional on Y<0), is 

f(Yti);  0) = (2~r) -W2 e -i  

×exp{ ff---ol2 l lYt i ) -  X(i)al,2 ) , (10) 
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where I1" II denotes the usual Euclidean norm. If 

we let 

e?), 

where 

ki=(X~i)X~i))-lX[i)y~i) and 

idi 2 --- II Y~0 - Sv) &, II 2 

then the exponent of (10) is 

ioi 2 + ( a i -  a)'( X~i)X(i))( &i- a), 

thus implying that /~ is sufficient, i = n, n + s. 
They are also the ML estimators. Because these 
estimators do not possess tractable sampling dis- 
tribution, we derive the approximate predictive 
likelihood. Given that 

I ~ ( ~ )  11/2 = ~- ( ,+  2) I X(')X~o 11/2 , 

i=n,  n+s ,  
the approximate predictive likelihood of Z given 
Y~,) =y~,) is (using (7), and Remark 4) 

L ( z l y ( . ) ) -  (n+s)(S+"-v-3)/2" e-S~2 
n (n-p-3)~2  (2~r ) s /2  

I g ( . )g< . ) l  1/2 

IX(. + ,  x(. +.1  ~/~ 

[(,, +s) - ' ' ° - : ' :  
(11) 

[ n <q 

which (aside from terms not depending on the 
future observations) 

For purposes of comparison we also compute 
the Bayes prediction density and Davisons' pre- 
dictive likelihood. Suppose that prior information 
on a is diffuse while that on r2 = 1 /o2  is Gamma 
(%/2 ,  Vb/2 ), and independent of a. Thus X(0)cc 
a(r2)O,/2 1 e - ~ / 2 .  Then Davisons' predictive 
likelihood is 

f D ( z l y ( n ) )  = 
( n  + S + V a -- 2)  (n+s+v~-p-1) /2  

(n + v~ - 2) (n+v°-p-1)/2 

e- s/2 

] S(n) X(n) I 1/2 

] X(,, + ~) 3(('. + ~) I x/2 

[(n + s)~:+s + Vb] -'~+~+~°,/2 

while the Bayes prediction density is 

fB( z I Y~,)) = ~r-s/2 " F((s + v + 00)/2 ) 
r ( ( ~  - ~o)/2)  

I x &  x~.) I~/~ 
I x(.+s) x( .+ ,  11/2 

[ ( .  + + '" 

=L(z j y , . ) ) [ l  +Op(n-X)] 

=fO(z ly , . ) ) [ l  +Op(n- ' )] .  

(12) 

p 4 : 2 ,  

(13) 

= IX~ .+~ ) 'X~ .+~ )1 -1 /2  

× + ( z -  x , , , s . ) '  

X m -1  ( z -  X ( s )~n )  ] - ` s + v - 2 ) / 2  

, -1  X ,  where M = [I~ + Xts)(Xt, ) Xt,)) (s)], Is is the 
identity matrix of order s, and v = n - p. 

Note that although the approximate predictive 
likelihood resembles the pdf of a multivariate t 
distribution with v -  2 degrees of freedom, it is 
not one because the matrix M contains z,+j, 
j = l  . . . . .  s - 1 .  

as n -+ oo, after considerable simplification. 

5. C o n c l u s i o n  

This paper proposes a new definition of the 
predictive likelihood, and derives an Op(n- l )  ap- 
proximation to the predictive likelihood that is 
easily computable. The new definition is based on 
estimators that may be only approximately suffi- 
cient and hence can be applied to a large class of 
models including those with dependent observa- 
tions. 
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